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This paper proposes a high-Reynolds-number theory for the approximate analysis 
of timewise steady viscous flows. I ts  distinguishing feature is linearity. But i t  differs 
fundamentally from Oseen’s (1910) well-known linear theory. Oseen flow is a 
variation on Stokes flow a t  the low-Reynolds-number limit. 

The theory is developed for a %dimensional body moving through an infinite 
incompressible fluid. The velocity-vorticity formulation is employed. A boundary 
integral expressing the body contour velocity is written in terms of Green functions 
of the approximate governing differential equations. The boundary integral contains 
three unknown boundary distributions. These are a velocity source density, the 
boundary vorticity, and the normal gradient of the boundary vorticity. The unknown 
distributions are determined as the solutions to a boundary-integral equation formed 
from the velocity integral by the prescription of zero relative fluid velocity on the 
body boundary. 

The linear integral-equation formulation is applied specifically to the case of thin 
bodies, such that the boundary condition is satisfied approximately on the streamwise 
coordinate axis. The integral equation is then reduced to its leading-order contribution 
in the limit of infinite Reynolds number. The unknown distributions uncouple in the 
first-order formulation, and analytic solutions are obtained. A most interesting result 
appears a t  this point : the theory recovers linearized airfoil theory in the first-order 
infinite-Reynolds-number limit ; the airfoil integral equation determines one of the 
three contour distributions sought. 

The first-order theory is then demonstrated by application to two classical cases : 
the zero-thickness flat plate a t  zero incidence, and the circular cylinder. 

For the flat plate, the streamwise velocity near the plate predicted by the proposed 
linear theory is compared with that of Blasius’s solution to the laminar boundary-layer 
equations (Schlichting 1968). The linear theory predicts a fuller profile, tending more 
toward the character expected of the timewise steady turbulent profile. This 
character is also exhibited in the predicted velocity distribution across the plate wake, 
which is compared with Goldstein’s asymptotic boundary-layer solution (Schlichting 
1968). The wake defect is more severe according to the proposed theory. 

For the case of the circular cylinder, application of the formulation is not truly 
valid, since the circular cylinder is not a thin body. The theory does, however, predict 
that  the flow separates. The separation points are predicted to  lie at position angles 
of approximately & 135O, with angle measured from the forward stagnation point. 
This compares with the prediction of 109O from the Blasius series solution to the 
laminar boundary-layer equations (Schlichting 1968). 

The theory is next applied to the case of a non-zero-thickness flat plate with 
incidence. From the fully attached flow a t  zero incidence, the theory predicts that  
both Ieading-edge separation and reattachment and trailing-edge separation appear 
on the suction side at small angle. On increasing incidence, the forward reattachment 
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point moves aft, and the aft separation point moves forward. Coalescence occurs near 
midchord, and the foil is thereafter fully separated. 

Finally, the first-order contribution to the far-field velocity at high Reynolds 
number is shown to be identically that corresponding to the ideal flow. This result, 
coupled with the recovery of linearized thin-foil theory in the near-field limit, is argued 
to support strongly the physical idea that the ideal flow is, in fact, the limiting state 
of the complete field flow at infinite Reynolds number. Flow separation can be viewed 
as present in the ideal flow limit; i t  is simply embedded in the infinitesimally thin 
body-surface vortex sheets into which the entire viscous field collapses as vorticity 
convection overwhelms vorticity diffusion at the infinite-Reynolds-number limit. 

1. Introduction 
Boundary-layer theory is a high-Reynolds-number approximation to  the incom- 

pressible field equations which is not useful for the analysis of separated flows. The 
fault is believed to have its origins in the segregation of the viscous and ideal 
constituents of the complete flow into separate solution domains (Batchelor 1970). 

A high-Reynolds-number approximation to the field equations different from 
boundary-layer theory is proposed here. Like boundary-layer theory, this new theory 
is approximate, but the approximations are different. The essential approximation 
is linearity. However, the treatment of the viscous and ideal constituents of the 
high-Reynolds-number flow is unified ; the single solution domain is the complete field. 
The unified theory predicts the characteristics of separated flows completely, but, of 
course, approximately. 

The proposed theory demonstrates other characteristics which are to the enhance- 
ment of its credibility. It recovers linear ideal-flow theory in the limit of infinite 
Reynolds number; thin airfoil theory, for example, appears in the limit. It predicts 
that, a t  high Re, positions of separation and reattachment points are independent of 
Reynolds number. In  taking the limit to the ideal flow, the separation and 
reattachment points maintain position. The separated flow is predicted simply to 
collapse, along with all other viscous-flow characteristics, into the infinitesimally thin 
body-surface vortex sheets as diffusion time tends to  zero relative to convection time 
a t  the infinite-Reynolds-number limit. 

The theory is developed for the two-dimensional infinite-fluid case, but is applicable, 
in general, to more complex configurations. 

2. Two-dimensional formulation 
The theory is developed in terms of the 2-dimensional flow depicted on figure 1. 

Here, a general 2-dimensional body is fixed in a stream which has uniform velocity 
U in the positive x-direction at infinity. The fluid domain is the region denoted as 
S ,  bounded internally by the body-surface contour I, and externally by the contour 
1, of infinite radius. 

It is assumed that the flow is time-independent, which excludes both turbulence 
and any unsteadiness of the shed laminar flow. 

The velocity-vorticity formulation is employed. The three applicable differential 
equations are 

(1) 

v * v = o ,  (2) 
Q x V = w k  (3 ) 

v. vw- Y V 2 W  = 0, 
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S 

with boundary conditions 

FIGURE 1. Flow configuration 

on i,, 

on 1,. 

v =  0, 

ok-n = 0 

V =  Ui,  

w = o  

The requirement ( 5 )  for vorticity tangency on the body-surface contour is satisfied 
identically in the 2-dimensional case, since k.n = 0. 

The scheme proposed here for approximately solving the formulation (1)-(7) 
involves first inverting the differential equations ( 1 )  and (3),  subject to (2), but 
independently of one another. That is, (3) is inverted as an integral expressing the 
field velocity in terms of the field vorticity, with continuity preserved. Equation ( 1 )  
is then inverted as an integral expressing the field vorticity in terms of the field 
velocity, with continuity preserved. A key approximation is then made which allows 
the separate integrals to  be combined as a boundary-integral equation, through which 
the problem boundary conditions can be satisfied. These steps are developed in the 
following. 

2.1. Inverse of (3) subject to (2) 

The inverse of o = curl V ,  subject to  continuity, is well known for the infinite-fluid 
case. The homogeneous solution to (3),  i.e. from V x Vh = 0, is just the potential flow, 
obtained by solving (2) directly, in terms of a velocity potential : 

Here u is an arbitrary source distribution on the body contour and G is the Green 
function of the potential-flow problem. I n  this case G = (2n)-llnr. C in (8) is an 
arbitrary constant. 
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The complete solution to the non-homogeneous equation (3) is obtained by adding 
a particular solution, which also satisfies continuity. The complete solution, with 
C = Ui, is 

V =  Ui+JlbgVGdZ+JJ S wkxVGdS. (9) 

Here, with G = (27c)-I In r ,  the particular solution is just the Biot-Savart law in terms 
of the unknown vorticity distribution. Note that the solution (9) satisfies the 
boundary condition (6), if w satisfies (7). 

2.2. Inverse of ( 1 )  subject to (2) 

Here, a new Green function, for vorticity, denoted by 9 ,  is introduced. Henceforth 
g is referred to as the vorticity Green function, as against G, the velocity potential 
Green function. 

The solution to ( 1 )  in terms of g is found in the usual way. First multiply ( 1 )  by 
g and integrate over the fluid region S. Then integrate that integral by parts to 
achieve the intermediate result 

Substitute ( 1 )  and (2) into the left-hand side of (lo), and recognize that (4) requires 
that V - n  = 0 on 1,. This reduces (10) to 

I n  view of (7), the integrals over I ,  in (11)  can be eliminated by requiring 

g = O  onl,. (12) 

Furthermore, in the interest of achieving w ( r )  as the left-hand side of ( l l ) ,  require 
that g satisfy the differential equation, 

V*Vg+vV2g = vd(r-ro) .  (13) 

Here ro represents the variable of integration in ( l i ) ,  and r, the field point vector 
in 8, is the independent variable. 

Substitute (12) and (13) into ( l l ) ,  with the result 

w ( r )  = Jlb(wg-&g)dZ. 

This integral represents the field vorticity in terms of its distribution and the 
distributions of its normal gradient on the body contour. The g required in (14) is 
the solution to the boundary-value problem defined by (12) and (13). 

3. Linearization 
The difficulty in going further with (14) lies in solving the differential equation (13). 

This is because its coefficient V is unknown. The essential feature of the proposed 
theory is approximation of V in (13) by a known function. This is the linearization 
of the problem to which all previous reference has been made. 
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The simplest and most obvious approximation of V for purposes of solving (12) 
and (13) is just the flow a t  infinity, V = Ui. Adopting this approximation, the 
differential equation governing g is further simplified to a linear one with constant 
coefficients, and a relatively simple analytic solution is guaranteed. 

From a physical point of view, replacing Vby Uiin (13) represents an approximation 
of vorticity convection relative to  vorticity diffusion. In  general, vorticity convection 
will be overestimated very near the body surface, and near the body stagnation 
points. It may be underestimated, on the average, in regions away from stagnation 
points and where flow separation is not occurring. The error should be least, in an 
overall sense, for streamlined bodies. 

The approximation V = Ui in (13) should not necessarily preclude the prediction 
of separated flow, in spite of Ui being a very poor approximation of the separation-flow 
velocity. For separation regions that are ‘thin’ enough relative to the thickness of 
the overall viscous-flow region, the net convection of vorticity would still be 
downstream, and with an average velocity of which V = Ui might not be a fatally 
severe approximation. 

From a mathematical point of view, the accuracy of a boundary-value-problem 
solution is, in general, more sensitive to the accuracy employed in satisfying the 
problem boundary conditions than to  the accuracy in the representation of the 
differential-equation coefficients. The boundary conditions (4)-(7) of the problem a t  
hand are to be satisfied with conventionally accepted rigour. 

4. The vorticity green function 

to 
With the approximation V = Uiin (13), the vorticity Green function is the solution 

with the boundary condition 
g+O as x2+y2+m. 

The x-wise Fourier transform of (15) produces 

where g*(k,  y;  6 , ~ )  is the Fourier transform of g(x, y ;  6 , ~ ) .  
The solution to  (16) is 

with inverse 
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Here the interest in high Reynolds number can be exploited. If the body Reynolds 
number U L I v  is large, only small values of k contribute significantly to the integral 
in (17). Its first-order approximation in this case becomes 

The above reduction is equivalent to ignoring vorticity diffusion in the streamwise 
direction, which is a conventional approximation employed in high-Re viscous-flow 
analysis. 

It is in fact at  (18) that the proposed theory diverges away from Oseen’s (1910) 
well-known linearization of the viscous field equations. Oseen’s linearized theory was 
developed as an improvement on Stokes flow for bodies translating a t  small Reynolds 
number. Streamwise diffusion was assumed to be of the same order as streamwise 
convection, so that the second-derivative terms in x in the Navier-Stokes equations 
were retained. Oseen flow is therefore a solution to an equation which is elliptic, and 
its solutions are basically diffusive in character. This is in contrast to the high- 
Reynolds-number linearized theory proposed herewith. On effectively discarding the 
streamwise diffusion term a t  (18), the system becomes parabolic in x, and its solution 
is very different in character than that of Oseen. This becomes apparent below. 

The integration in (18) dan be performed exactly using integral tables (ErdBlyi et 
al. 1954). Taking care with the branches of the complex square roots so as to achieve 
vorticity convection downstream, the final integrated form of the vorticity Green 

5. Non-dimensionalization 
With velocities non-dimensional on the stream speed U ,  distances non-dimensional 

on the body length L, and vorticity non-dimensional on U / L ,  the complete 
formulation of the proposed linearized theory, as applied to the 2-dimensional 
infinite-fluid case, is 

(20) V = i+h, cVGdZ+JJswk x VGdS, 

with 

with 

and with the boundary condition 

V =  0 on lb. 
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FIGURE 2. Thin-body geometry. 

6. Application to thin bodies 
The formulation (20)-(24) is now applied specifically to bodies that are thin enough 

so that the boundary condition can be satisfied approximately on the streamwise (x) 
axis, in the usual sense. 

Employing the notation depicted on figure 2, the velocity and vorticity integrals 
(20) and (22) become 

1 

V(X,Y) = i+ J;=o~(5)VG(x,y;5,0)d5 

4511rA k x VG(X9 9; 51971) dlll d51, (25) 

The new unknown distributions p and /3 in (26) appear on collapsing the body contour 
to the x-axis. They are respectively the ‘vorticity doublet density’ 

p(x) = w(2,0+)-w(x,O-) (27) 

with axis in plus y, and the ‘vorticity source density’ 

aw a@ 
P(x) = - (x, O + )  -- (x, 0-) 

a Y  a Y  

On transferring from the body surface to the x-axis, the boundary condition (24) 
becomes, to first order, 

= w(x, O + ) j .  

Here ~ ( x ) ,  c(x) and a are the thickness and camber distributions and the angle of 
attack of the thin body, as depicted on figure 2. 

In applying the boundary condition (29) to determine the distributions cr, p and 
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P in (25) and (26), (26) is substituted into (25) with G and g from (21) and (23). The 
resultant velocity components on y = 0, after exact integration in vl ,  are 

V F ( a )  E ea2 erfc (a) ,  

lim VF(a)  = 1 +O(a),  
a-to 

with limiting values 
(32) 

(33) 

Note from (30) and (31) that the tangential velocity u(x, O * )  does not depend on the 
vorticity source density P, while the normal velocity v(v, 0*) does not depend on the 
vorticity doublet density p. This is a consequence of the odd characters of the 
integrands involving these functions in the vl integrations performed in (25). 

The distributions, c, p and P are easily computable from (30) and (31). The velocity 
source density is determined first by matching the odd terms in (31). This gives 
r ( x )  = dT/dx, which is the same familiar result from ideal-flow theory. p(x) and P(x) 
can then be calculated directly from (30) and the remaining (even) terms in (31); the 
integrals are numerically well behaved. 

6.1. High-Reynolds-number reductions 

Although the p- and P-distributions can be computed numerically from (30) and (31) 
without difficulty, further simplifications result on focusing attention on the lowest- 
order contributions in the limit of high Reynolds number. 

Considering the tangential velocity first, the first term involving p(E) in (30) is the 
contribution from the singularity at El = x, and it dominates the remainder integral 
as Re --f 00, except perhaps for x very near zero. This can be seen by considering that 
as Re+m the function VF in (30) is O ( R e d ) ,  by (33), except for x downstream of 
6 and near El, where it is O(1).  But the factor on V F  in the integrand is identically 
zero at x = El. In  the interest of clarity, define a small parameter E which is O ( R e 3 )  
as Re+co.  Then, for 1x-&1 = O(E)  in (30), the remainder integral in (30) is 
O ( s R e f )  = O(Re-'), as the function VF is no larger than O(1). For Ix-C;J = 0(1), on 
the other hand, VF = O(Re-4) by (33), with the result that the remainder integral 
is again O(I2e-l). Therefore the remainder integral term in (30) can be considered as 
no larger than O(Re-l) ,  and therefore of higher order relative to its principal part (the 
first y-integral in (30)), which is O(Re-4). 

It should be noted that the first-order integral in (30) can be obtained directly by 
dropping the av/ax term in (3) and simply inverting w = - au/ay by direct integration 
in y. 
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In  the high-Re limit, and excluding the region of x near zero, (30) can therefore 

This is an Abel integral equation on p ( x ) ,  whose inverse is well known. Denote the 
left-hand side of (34) by ui(x,O), this is the potential-flow velocity tangent to the 
contour of the equivalent symmetric body of thickness 7(5). The inverse of (34) is 

Turning to  the normal velocity (31), the 5, integrand is maximum, just as with the 
tangential velocity, when x is downstream of E and Ix-tll is small. In  this case 
V F  in (31) is O(1) as Re+ 00. But, because of the sign change forced on the integrand 
a t  t1 = x, cancellation occurs in the integral for lx-cll small. Denote this interval 
again by Ix-Ell = O(e) .  The integration over the interval lx-tlI = O(e) in (31) can 
be taken as higher order in view of the cancellation. Then, for integration outside 
of this small interval, the argument of V F  is large, and the function V F  can be 
replaced by the leading term in its asymptotic expansion, i.e. 

Substitution of (36) into (31), and allowing for complete limiting cancellation in 
lx-tll = O ( e ) ,  gives 

Allowing that ~ ( x )  = dT/dz in (31), (37) takes the form 

But the integral J *  P ( t )  d t  in (38) is identically zero, as required by conservation 
E = O  

of vorticity. That is, p has been identified as the vorticity source density; therefore 
its integral represents the net vorticity source strength. This must be zero because 
the vorticity-gradient field is divergenceless. Like fluid flow, vorticity flow must be 
conserved. Therefore. 

1 

J5=08(E) d t  = 0. (39) 

The integral equation (38) on P(x) then takes the simple form 

It is enlightening a t  this point to integrate (40) by parts. Define 

Then, on integration by parts, (40) becomes 
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Equation (42) is immediately recognized as the airfoil integral equation from 
linearized ideal-flow theory; y(x) is the vortex density along the foil! 

The proposed theory therefore supports the physical idea that the ideal flow is, in 
fact, the limiting state of the complete flow at infinite Reynolds number. 

Note from (41) that  the Kutta  condition on the thin-foil problem, by the current 
theory, is, in reality, nothing more than a statement of conservation of vorticity, since 

by (39). 
By (41), with P(x) identified as the vorticity source density, y(x) is actually a 

By definition, y(x) is the local jump in tangential velocity across the foil a t  x. From 
vorticity doublet density, with axis tangent to the foil. 

The vorticity source density in the limit of infinite Reynolds number is therefore just 
the Reynolds number times the local chordwise rate of change of the tangential 
velocity jump across the foil. 

The airfoil integral equation, whose solution produces P(x) by (43), has the 
following well-known inverse : 

6.2. Circulation 

By definition, circulation is the space integral of vorticity: 

r= jm Jm w(x,y)dydx. 
53- -00  y=-w 

(45 ) 

w(x, y) can be substituted from (26), with the vorticity Green function from (23). When 
this is done, the doublet density p(x) from (26) disappears because its associated 
integrand is odd in y. Equation (45) becomes 

Integration in y produces 

But the second integral is zero by (39), leaving 

This integral can be integrated by parts to recover the conventional definition of 
circulation from the context of thin-foil theory. Using (411, 
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6.3. Surface shear stress 
The fluid shear stresses on the upper and lower surfaces of the thin body are of 
interest, in that negative surface shear stress is produced by backflow, and it therefore 
serves to  define regions of flow separation. 

By Stokes law the shear stress tangent to  the body contour is the fluid-dynamical 
viscosity times the normal gradient of the fluid velocity. But, since the normal 
component of the velocity is identically zero on the contour, the normal velocity 
gradient is just the negative of the surface vorticity. For conditions satisfied on the 
axis of the thin body, 

7 ( x ,  o*) = Tpo w(x,  O f ) ,  

where the constant po is the fluid-dynamical viscosity. I n  terms of the current 
non-dimensionalization, 

The surface vorticity is obtained from (26), with g from (23). Evaluating the integral 
on y = 0' gives 

w(x,O') = +ip(x)----- 
2 ( x  Re)f 5 = o  ( x - 6 ) ~  (49) 

Therefore, once p and p have been obtained from the integral-equation solutions, the 
predicted occurrence of flow separation can be simply assessed by way of (48) and 
(49). 

7. Examples 
7.1. Flat plate with zero thickness and incidence 

The simplest case to  which the theory can be applied is the zero-thickness flat plate 
oriented parallel to the stream. 

From (31), or (44), the vorticity source strength P(x) is zero for this case. The field 
vorticity is therefore given by (26) as 

The vorticity doublet density p is obtained from (35) with u(x) = 0 in the surface 
ideal velocity u,(x, 0). Performing the integration and differentiation required by (35) 
gives 

A normalized surface shear stress from (48) and (49) is 

Substituting (51 ), 

The shear stress is therefore positive and equal on both sides of the plate. Separation 
is predicted not to occur, which is most certainly the case. 

T ( Z , O ' )  = x-4. 
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The field vorticity produced by the plate is readily predicted from (50) and (51). 
lntegration gives 

xl.,*- \2 \x(x- 1))  ) "b" 

Note that, unlike the prediction of boundary-layer theory (Schlichting 1968), the 
plate-surface vorticity by (53) is continuous from the plate surface into the wake 
x > 1,  y = 0. For x > 1, y = 0, the error function is zero, giving zero vorticity along 
the axis, as is required. On the other hand, for IyI arbitrarily small, as x+l from 

The vorticity a t  the end of the plate is therefore recovered on approaching the plate 
from the wake. 

The velocity field can also be easily calculated on retaining the approximation 

As previously discussed, this is equivalent to  the high-Reynolds-number approxim- 
ation employed a t  (30) to  achieve the simplified p(x )  integral equation (34). 

Integrating (54) in y, with w from (53)  : 

The evaluation of the last integral in (55) is not readily apparent. However, since 
x > 1 ,  y can be set to  zero in the integrand without difficulty to evaluate the velocity 
along the x-axis behind the plate. It is 

2 1 
u(2,O) = 1 ---arctan---- (x > 1). 

R (x- l)t 

Here again, the wake velocity is continuous to the no-slip value of zero on 
approaching the plate end from the wake: 

lim u(x,O) = 1 
x+1+ 

By boundary-layer theory a singularity in u(x,O) occurs at the plate trailing-edge 
stagnation point. 

For large values of x behind the plate, x B 1 in (56), and the axial wake velocity 
takes the limiting form 

2 
u(2,O) = 1 --. 

TCXi 
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7-- 

6--  

5-- 

h 3 4-- 
s 
c 3-- 
II 

2-- 

(9) 

FIQURE 3. Flat-plate velocity profiles. 

This compares with the asymptotic boundary-layer solution due to Goldstein 
(Schlichting 1968) : 0.664 

Therefore, for any value of x B 1,  the wake velocity defect is more severe by the 
current approximation than by that due to  Goldstein. 

The same tendency appears in the plate velocity profile by (55), compared to  that 
of Blasius (Schlichting 1968). First denoting 7 = y(Re/x)l, the plate boundary-layer 
profile from (55) is 

This is compared with the Blasius profile on figure 3. 
The linear theory, by (57), predicts a ‘fuller’ velocity profile than does the Blasius 

boundary-layer solution, as shown on figure 3. This is no doubt due to the 
overestimate of vorticity convection near the plate surface, which is inherent in the 
current theory. 

7.2. More-general symmetric cases 

The symmetric flat plate is of limited interest since flow separation does not occur. 
For the symmetric case with thickness, the surface shear stress is still given by ( 5 2 ) ,  
but with p(x )  calculated more generally from (35)  with g ( x )  $: 0. 

The ui (2, 0 )  in (35)  has been defined as the potential-flow velocity over the surface 
of the symmetric body. It is zero a t  both x = 0 and x = 1, which positions correspond 
to the forward and after stagnation points respectively. This suggests a Fourier 
sine-series representation for ui, in the form 

u(x ,  0) = 1 -- 
(7cx)l . 

u(x, Y) = er f (h) .  (57) 

00 

ui(x, O k )  = C, A ,  sin nnx (0 < x < 1). 
n=1 

Substitute this series into (35)  and interchange the order of summation and 
integration : 
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Integration gives 
W 

p(x) = -2Rei E A ,  (2nn)i [cos (nnx) C, (nnx) +sin (nnx) S, (nm)].  (58)  
n-1 

Here C, and S, are the Fresnel integrals. 
For x near 1, the arguments of the Fresnel integrals can be considered as large; 

these functions asymptote to a value of 4 for large argument. The position of the 
flow-separation points, corresponding to 7(2, 0*) = 0, from (52), can therefore be 

Z A, ni (cos n m  + sin nns) = 0 
n-1 

approximated from 00 

W 
or 

A,nicos(nnx-+n) = 0. 
n-1 

(59) 

The simplest possible potential-flow distribution to which (59) can be applied is 

ui = A ,  sin nnx. (60) 

For A, = 2,  this corresponds to the ideal flow velocity over the surface of a circular 
cylinder, if x is measured along the circular contour. Now the circular cylinder is 
certainly not a thin body, and the subject formulation is therefore not truly 
applicable. The result is nevertheless interesting. 

For A,  = 2 ; A, = 0, n > 1 ,  in (59), the position of the separation points corresponds 
to 

or 
cos (ns-+z) = 0 

x=Z 4 '  

This is a position angle on the circular cylinder of k f n ,  or k 135'. The Blasius series 
solution to the laminar boundary-layer equations predicts that separation occurs at  
logo. According to Goldstein (1965), the position of the circular-cylinder separation 
point for high-Reynolds-number turbulent flow is difficult to estimate with exactness 
from experiments, but appears to fall between 122 and 130'. 

The separation-point analysis by (59) was also performed on a 4:  1 ellipse using 15 
terms in the Fourier-series expansion for ui(x,  0). Separation was predicted at 
x = 0.93. Polhausen's method (Schlichting 1968), based on laminar boundary-layer 
theory, predicts a value of x = 0.84 as the position of the separation point on a 4:  1 
ellipse. 

7.3. Flat plat with non-zero thickness and incidence 

For a flat plate with angle of attack a, integration of (44), with c(x) = 0, gives the 
vortex density 

Then, by (43), the vorticity source density is 

-aRe 
p ( x )  = Rey'(x)  = 

(x3(1 -x))i '  

For zero thickness, the vorticity normal doublet density p(x) is the same as that 
previously developed for the zero-thickness flat plate a t  zero incidence, i.e. (51) : 

p ( x )  = - 2 ( Z ) !  



A theory for Pow separation 

'"T ?" 
177 

U 

* 20 I1 

-100 -"t I 
FIGURE 4. Flat plate with incidence, leading-edge characteristics. 

The normalized surface shear stress, from (as), (49) and (52), is then 

An apparent difficulty exists at (63) because of the higher-order singularity in p at 
x = 0 implied by (62). Actually P(x) must be finite a t  x = 0. Figure 4 is a sketch of 
the function y(x), by (61), as well as p(z), (62), in the region xo ,< z < 1, xo+O. The 
necessary character of the functions into the origin is also indicated. The represent- 
ations (61) and (62) do not include the vanishingly small region 0 < x < xo indicated 
on figure 4. I n  this region the vortex density, by necessity, increases from zero a t  
x = 0, peaks, and decreases to the inflexion point near xo, whereafter i t  follows (61). 
However, in view of the y' characteristic of figure 4, the details of the leading-edge 
behaviour should not be of great concern in the y' integral of (63), as cancellation 
will obviously be occurring in the integration over the interval 0 ,< x < xo. Assuming 
that the integration in this small region is identically zero, the lower limit zero in 
the integral of (63) can be replaced by xo. Here i t  is to be understood that xo is some 
small value, relative to x, which represents the approximate position of the inflexion 
point in the vortex density curve, or, equivalently, in the foil pressure jump 
characteristic. 
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FIGURE 5.  Elliptic integral D(s )  = [K(z)-IZ(z)]/z2.  

Substitute y'(x)  from (62) into (63) and integrate. The result is, after retaining the 
first-order terms for xo/x  + 1, 

Here 

where K and E are the complete elliptic integrals of the first and second kinds. The 
limiting behaviour of D is 

lim D(a) = fn + O(a2),  

lim D(a) = O[ln (1 -a2) ] .  

a-to 

a-tl 

Figure 5 is a graph of the function D ( z )  in (64). 
For the suction side of the foil being positive 3, as shown on figure 2, the angle 

of attack, a, in (64), has negative value. Therefore i t  is obvious from (64) that, from 
the fully attached flow at a = 0,  as the angle of attack increases to non-zero negative 
values the suction side of the foil separates. For a + 0 a small value of zo can, in fact, 
always be selected such that the foil is fully separated for all z % xo. The one 
disturbing aspect of (64) is that, on consideration of the characteristics of D ( d ) ,  as 
angle of attack increases for fixed xo, the separation point moves forward from the 
trailing edge ; the accompaniment of leading-edge separation and reattachment is not 
predicted. Observations indicate that, with increasing angle of attack from zero, 
distinct regions of separation typically first appear at both the leading and trailing 
edges of thin foils. The reattachment point forward moves aft and the separation point 
aft moves forward until the two coalesce a t  complete separation of the suction surface. 



A theory for $ow separation 179 

Y 

I 
XI 

FIQURE 6. Flat-plate leading-edge thickness. 

The most likely reason for the failure of (64) to predict leading-edge separation and 
reattachment appears to lie in the representation of p(x) by (51). The shear stress 
due to p(x), by (51), is the first term in (64). It is positive infinite at the leading edge, 
and therefore counteracts the negative leading-edge shear stress due to angle of 
attack, which is tending to produce separation. In reality, the high positive 
leading-edge shear stress associated with p(x) should fall away more rapidly than x-i 
owing to the deceleration flow associated with finite-leading-edge thickness, which 
always exists. 

The effects of thickness in p(x) are included at (35) in the ideal-flow velocity 

To allow for finite leading-edge thickness of the flat plate, represent the plate leading 
edge as the simple wedge shown on figure 6. Then, from figure 6, 

Substitute a(x) into (65) with (65) then substituted into (35). After some mani- 
pulation 

p(z) = -2($y 1 T d  1 

Performing the integration and differentiation required by (66), after retaining only 
lowest-order terms in the integrand for xJx 4 1, produces 

Ax) =-2(G) Re 4 [1+&(1-1.3]. 
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FIQURE 7. Flat plate with thickness and incidence; variation of suction-side 
shear stress with angle of attack. 

Replacement of (51) by (67) in (64) gives the normalized surface shear stress on the 
flat plate with allowance for leading-edge thickness : 

The decelerating thickness flow from (66) produces the required behaviour in (68). 
For x/xl > 1 the terms multiplying T in (68) are collectively negative. This results 
in a more rapid decay of the positive component of the leading-edge shear stress away 
from x = 0, and thereby creates a more favourable environment for the occurrence 
of localized leading-edge separation. 

Simple computations were performed using (68). The following values were 
arbitrarily selected for the parameters : 

x,, = x1 = 0.001, T = 0.02. 

The results of the computations for ?(x,O+) from (68) are shown on figure 7. Here 
the normalized shear stress on the suction surface is plotted versus distance along 
the flat plate from the leading edge, for values of angle of attack from - 1.3' to - 1.8'. 

First of all, figure 7 shows that the decelerating thickness flow at the leading edge 
does produce the localized leading-edge separation, as conjectured. Actually, (68) 
predicts that the leading-edge separation is imperceptible a t  zero angle of attack, 
existing essentially as an infinite discontinuity in the shear stress as x approaches xl. 
On increasing angle of attack to negative values the leading-edge separation 
progresses after from the leading edge on the suction surface. At - 1.3' angle of attack 
for this example, the forward reattachment point is at approximately 2 % of chord 
behind the leading edge. 

A negative infinity in the trailing-edge shear stress also occurs; this is associated 
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with the angle-of-attack terms in (68), specifically D(x4). However, figure 7 shows 
that, for the subject example, the after separation point has not moved perceptibly 
off the trailing edge up to approximately - 1.6' of angle of attack. 

The leading-edge separation and reattachment therefore appear first in the figure 
7 example. Beyond approximately - 1.6' incidence, suction-side trailing-edge sepa- 
ration begins to spread forward, accompanying the spread of leading-edge separation 
aft. The forward reattachment point and the aft separation point move toward one 
another beyond - 1.6'. Coalescence occurs near the 40 yo chord between - 1.7' and 
- 1.75O incidence. For higher angles of attack, the suction face of the foil is fully 
separated. 

The behaviour predicted on figure 7 agrees, a t  least qualitatively, with observations 
(Goldstein 1965). 

It is noteworthy that while increasing angle-of-attack, and lift, increases the 
degree of separation, by (68) and figure 7, the lift, to first order, is not affected by 
the degree of separation. The lift is from the vortex density according to ideal-flow 
theory, (44). This independence of lift on separation is a consequence of the first-order 
approximation on high Re employed at (34) and (36). If second-order terms are 
retained at (30) and (31), an influence of separation on lift will certainly appear. 

Another important first-order effect obvious from (68) is that positions of separation 
and reattachment points are independent of Reynolds number; the separation- and 
reattachment-point positions correspond to T ( x , O * )  = 0. The theory is predicting 
that while the thickness of the viscous flow tends to zero as O(Re-i), separation and 
reattachment points asymptote to fixed positions on the body as infinite Re is 
approached. The character of the separation is therefore established in the lowest 
order. However, the separated flow is a subregion within the complete viscous field 
of the body. The thickness of the separation, versus its extent, therefore vanishes 
within the vanishing thickness of the entire viscous-flow domain as Re approaches 
the infinite limit. Again, retention of higher-order terms at (30) and (31) will 
impose a Reynolds-number dependency on the separation- and reattachment-point 
positions. 

8. Far-field velocity 
Return to the general linearized velocity field given by (25) .  If O ( X ,  y )  is substituted 

from (26), with g from (23), and y is set to O( l ) ,  retention of the lowest-order terms 
as Re -+ 00 gives 

W ,  Y )  = i+ 4 5 )  WX, Y ;  L O )  dE- K ( E )  VG(2, Y ;  E ,  0) dE Lo & = O  

+ ~ ~ = o y ( E ) k x v G ( , , Y ; E , o ) d E .  (69) 

The vortex density y in (69) has been previously defined in terms of the vorticity 
source density p, according to (43), as 

P ( 4  y ' (x)  = -. 
Re 

K ( X )  is similarly defined in (69) in terms of the vorticity normal doublet density p 
as 
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Note from (69) that while K ( Z )  is actually a doublet density on vorticity, it contributes 
as a velocity source density with respect to the far-field flow. K simply superimposes 
upon u to form an effective source density allowing for sourcelike vorticity effects 
from the body near field. Denote this effective source density by 

a,(x) = CT(X) -KK(Z) .  (71) 

The far-field velocity is therefore of just the same form as the familiar result from 
thin-body ideal-flow theory : 

v ( x , y )  = i+SI=one(S)vG(~,~;S.O)dS+S1 5 = 0  Y ( ~ k x ~ ~ ( x , y ; ~ , ~ ) d t .  (72) 

Now reconsider the source density ue(x).  For a flat plate for which the thickness 
is zero, a, = - K .  But from (51), using ( 7 O ) ,  ~ ( x )  for the flat plate, at  either zero or 
non-zero incidence, is, to first order, 

0 
L 

K ( X )  = - 
(n Re x)i' (73) 

For a 2-dimensional body in ideal flow, the non-dimensional source density is the 
streamwise rate-of-change of body thickness. In this view, define an effective 
thickness of the viscous flow on both faces of the flat plate as 26,(x). This is consistent 
with the concepts of second-order boundary-layer theory. From (71) and (73), then, 

1 
( x R e x ) i '  6&) = $a, (x)  = - i K ( X )  = 

Integration gives 

This effective thickness can be compared with the flat-plate boundary-layer thickness 
from figure 3. The boundary-layer thickness 6 is conventionally defined at some x 
as the normal distance from the plate to the point at  which the streamwise velocity 
has attained very nearly the free-stream value. From figure 3, the value of 
non-dimensional distance 7 at which the free stream is attained is approximately 5 
by the Blasius boundary-layer solution; it is slightly less, approximately 4, by the 
subject linear theory. This implies a boundary-layer thickness according to Blasius 
of 

or 

by the subject theory. In  either case, comparison of (74) with (75) or (76) gives the 
predicted effective thickness of the rotational flow as seen from the far field as 
approximately one-quarter of the boundary-layer thickness. 

Note, however, from (73), that K in (69) is O ( R e d ) ,  whereas the vortex density y 
is O(1). Therefore, the K-term in (69) is actually higher order as Re- tco .  That is, 
u,+a by (71) as Re+co.  The first-order far-field velocity by the proposed unified 
theory is therefore predicted to be precisely that according to ideal-flow theory : 
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9. Conclusion 
When viewed from a broad perspective, one must conclude that the proposed 

theory demonstrates complete consistency with the physical idea that the ideal flow 
around a streamlined body represents the complete real flow, including any flow 
separation, in the limit as the body Reynolds number tends to infinity. The physical 
argument for the concept is that all viscous-flow effects, including separation, simply 
collapse into the infinitesimally thin body-surface vortex sheets as vorticity convection 
overwhelms vorticity diffusion in the infinite-Reynolds-number limit. Here a single 
vision scale, of fixed dimensions relative to body proportions, must be employed. This 
is versus the two separate vision scales fundamental to boundary-layer theory. When 
viewed on the single-vision scale, all viscous flow effects disappear completely from 
view onto the body surface as Re tends to infinity. The separated flow exists within 
the infinitesimally thin surface layer, but it has vanishing effect on the net lift and 
the far-field induced velocity as the infinite-Re limit is approached. 

Consideration of this concept actually suggests an iteration scheme, where the first 
iterate is just the limiting ideal flow at infinite Reynolds number. The second iterate 
toward decreasing Reynolds number would be obtained, at least conceptually, by 
substituting the first-iterate velocity field into the differential equation on the 
vorticity Green function at (13), and computing a new solution. Baok-substitution 
of the new solution into (13) would begin a new iteration, and so forth, The difficulty 
in the mechanics of this aside, the results demonstrated in the foregoiag suggest that 
one could expect to obtain convergent steady laminar-flow solutions with separation. 
It is also interesting to postulate the possibilities of an extension of such a scheme 
for calculating unsteady laminar-flow effects, which become more important as 
Reynolds number is reduced. 

Could it also be a possible approach to turbulence ? ! 
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